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All polynomials in this paper are supposed to have real coefficients.
Polynomials which can be represented in the form

p(x) = L akl(l-x)k(1 + X)l,
k+l~m.

k.t~O

with all akl;:::' 0 or all akl:( 0, (1)

have been introduced and studied by G. G. Lorentz [1J; we shaH call them
polynomials with positive or negative (more exactly non-negative or non­
positive) coefficients, respectively, or simply Lorentz polynomials. Their set
will be denoted by L + and L -, respectively; also let L = L + u L -. The
representation (1) is not unique, since multiplying by

1=(1-X + 1+X)S =2-s ±(s.) (1-x)J(1 +xy-J
2 2 J=O ]

(s=1,2, ... ), (2)

we obtain other representations. Among all of the representations (1) of a
fixed polynomial p(x) E L, consider those for which m is the least possible
value. This will be called the Lorentz degree of p(x), and it will be denoted
by d(p). If JIn denotes the set of polynomials of degree at most n, then
obviously, p(x) E JIn\JIn- I implies

d(p) ;:::'n. (3 )

The representation (1) of a p(x)EL with m=d(p) is still not unique,
since terms in (1) with k + 1< m can be multiplied by (2) with
s = m - k -I;:::' 1, resulting in a new representation. However, by this
method each representation can be transformed into

d(p)
p(x)= L ak(l-x)k(1+x)d(p)-\

k=O

107

(4)

0021-9045/88 $3.00
Copyright © 1988 by Academic Press, Inc.

All rights of reproduction in any form reserved.



lOS ERDELYI AND SZABADOS

and this is already unique, as is easily seen. We shall call (4) the Lorentz
representation of p(x).

Our primary concern here is the structural characterization of the set L.
This is expressed in the following

THEOREM 1. A polynomial not identically zero belongs to L if and only if
it has no roots in the interval ( -1, 1).

The "only if' part of the statement is trivial: a Lorentz poiynomial not
identically zero cannot have zeros in ( -1, 1). The "if' part is more difficult
and it will follow from Theorem 3 below, which can be considered as a
quantitative version of Theorem 1.

Remark. Of course, the notion of Lorentz polynomials can be
introduced on any finite interval (a, b): this is the set of polynomials p(x)
representable in the form

d(p)
p(x)= L ak(b-x)k(x-a)d(p)-k,

k=O

This will be a Lorentz polynomial in any (c, d) c (a, b), since substituting

b-c b-d
b-x=--(d-x)+-- (x-c),

d-c d-c
c-a d-a

x-a=-- (d-x)+-- (x-c)
d-c d-c

(
b-c b-d c-a d-a )

where -d ' -d ' -d ' -d- are non-negative ,-c -c -c -c

we 'get a representation of p(x) on (c, d) with non-negative or non-positive
coefficients. This also shows that the Lorentz degree of a polynomial on a
subinterval cannot be higher than that on the original interval.

At first we settle the problem of Lorentz representation of quadratic
polynomials. In this case we get sharp estimates for the Lorentz degree.

THEOREM 2. (i) If a quadratic polynomial p(x) has no roots in the open
complex unit circle then d(p) = 2.

(ii) If the roots of a quadratic polynomial p(x) are on the ellipse
y2=e2(1-x2) (O<e<l, Ixl<l) then

1 2
2:S; d(p) < 2+ 1.
e e

(5)

Proof (i) This statement is equivalent to an observation of G. G.
Lorentz (see T. Scheick [3]).
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(ii) Evidently, we may assume that the leading coefficient of p(x) is 1.
Then

We look for a representation

m

p(x)= I alm(1-x)I(1 +x)m-I,
I~O

Let u = (1- x)/(1 +x), then

(Ietl < 1).

all alm ;3 O.

(6)

m

2m I alm ul=(1+u)m-2{(1_u?+2et(1-u2)
I~O

+ [et 2+<;2(1-et2)](1 +U)2}

= (1 + u)m-2{[(1_ et)2 + <;2(1- e(
2)] u2

- 2(1-<;2)(1-et2) u+ [(1 +a)2+<;2(1_a2)]).

Thus

(
m-2\

2ml!alm =[(1+a)2+<;2(1-a2)] I }l!

- 2(1-<;2)(1-a2) G)(7~12) (I-1)!

+ [(1-a)2+<;2(1-a2)] G)2(7~~) (I-2)!,

i.e.,

2ml!(m-l)!
b,m := (m-2)! a,m=(m-l)(m-I-1)[(1+af+<;2(1-a2)]

- 2(m -I) 1(1- <;2)(1- ( 2)+ 1(1- 1)[(1 - a)2 + ,:2(1 - ( 2)]

= (m - 21)2 + 2(m - 1)(m - 21) a + m(m - 1)[(1- ( 2) <;2 + ()(2] - m

(l=O, ...,m). (7)

Hence the coefficients aOm and amm are always positive (independently of
the choice of m;3 2), namely,

2
m

2 2 2

1)
amm =(1-a) +c(l-et).

m(m-
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Thus in what follows we will assume that 1~ /~ m - 1. Let m >2/e2
, then

we get from (7)

him> (m - 2W + 2(m -1)(m - 2/) ex + (m -1)(m -2) ex 2 +m-2

2 m-l 2>(m - 2/) - -- (m - 2/) + m - 2
m-2

4(m -/- 1)(/ - 1)
= >0

m-2
(/ = 1, ..., m - 1).

This proves the upper estimate III (5). To see the lower estimate, let
m < l/e2

• Then (7) yields

him < (m - 2W + 2(m-l)(m- 2/) ex + (m -If ex L -l

= [m - 2/ + (m - 1) ex] 2 - 1~°
provided / is chosen such that 1m - 2/ + (m - 1) exl ~ 1. This proves the
lower estimate in (5).

The following two examples show that both estimates in (5) are sharp.

EXAMPLE 1. Let 0< e< 1 be such that l/e 2 is an integer. Then for the
quadratic polynomial

with roots on the ellipse y2 = e2(1- x2
), we have d(Pl) = l/e2

. Indeed, we
get from (7) with m = l/e 2

2 6 1 6 1= (2/- 3) + 8--+--9+---
e2 e4 e2 e4

(/= 0, ..., m),
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EXAMPLE 2. Let °< s < 1 be such that 2/s2 is an integer. Then for the
quadratic polynomial

with roots on the ellipse y2 = s2(1- x2), we have d(P2) = 2/s2. Indeed, we
get from (7) with m = 2/s2

- 1

l2-5e2 (2-3s2)2 -s8+5e6 +e4 -8£2+4
b lm = (m-l) -S-2-- 2 e2(1- s2)(2 _S2) + s2(1- e2)(2 _ S2)

2s4

= --22<0,
-8

i.e., d(Pz) ~ 2/s2
, and by (5), d(P2) = 2/e2.

We now turn to the estimate of Lorentz degree of polynomials of higher
degree. As we shall see, the results are less complete than for quadratic
polynomials. Let <p(x) be a positive continuous function in (-1, 1) and
denote

D(<p) = {z=x+iy Ilyl < <p(x), Ixl < 1}

the domain of the complex plane determined by it. Also let

and

dn( <p ) = sup d(p).
pE Ln(q»

THEOREM 3. If

. <p(x)
1~s:= mf ~>O

Ixl<1 V I-xl

then

(8)

where lal ~ 1 is a point where the infimum in (8) is attained. 1

1 In what follows cl' C2, .•. will denote absolute positive constants.

640/54/1-8
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Remarks. 1. Theorem 3 implies the missing part of Theorem 1.
Indeed, if p E Iln has no roots in (-1, 1) then for sufficiently small
CPo(x) == e > 0 it has no roots in D(CPo), and thus pE L n ( CPo), i.e., pEL.

2. In some interesting cases the lower estimate in (9) is of the same
order of magnitude as the upper estimate; e.g., if

or

with - 00 < a :::;; ! (when a = 0), (10)

However, if

(whena= ±1).

CP3(X) =e2
/
3(1-J1-e 2

/
3·x)

then a = J1- e2
/
3 and thus dn(CP3)?3 c j n/e4/3, which is much smaller than

the upper estimate. (It is easily seen that the latter estimate is valid for any
cp(x) satisfying (8), as stated in (9).)

Conjecture. In general, the lower estimate in (9) can be improved to
dn(cp)?3 c j n/e2

•

Proof of Theorem 3. First we prove the upper estimate in (9). Let
p(x) E L n ( cp), then it can be written in the form

K N

p(x)=c n (x-ad n (X 2 + 2ak x +lh),
k~j k~j

where K + 2N:::;; n, akE IR\ (-1,1) (k= 1, ..., K) and

(k= 1, ..., N). (11 )

Here the left side inequality follows from the fact that p(x) has no roots in
D(cp), and the right side inequality is a consequence of (8).

Our method of proof is to represent each factor of p(x) as a Lorentz
polynomial, and then multiplying these we get a representation of p(x). The
linear factors of p(x) can be written as

which is a Lorentz representation since lak l?3 1. As for the Lorentz
representation of the quadratic factors of p(x), it is clear from (6) and (7)
that the greater the constant term in a quadratic polynomial is, the greater
are its Lorentz coefficients. Since by (11) Ih?3 e2

( 1 - aD + a~, the Lorentz
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degree of x 2+ 2akx + Pk is between 1/1'2 and 2/1'2 + 1, by Theorem 2.
Multiplying the Lorentz representations of the linear and quadratic factors
we get the upper estimate in (9).

To prove the first lower estimate in (9), let

(12)

where, without loss of generality, we may assume that

1 (l-a
o~ a < 1 and 0 < I' < "4 -V "1+a' (13 )

The roots of this polynomial are a ± ie~ = a ± icp(a), by (8) and the
definition of a. Hence P3(X)EL 2n(cp). (We shall prove the lower estimates
with 2n instead of n, which, again, does not restrict generality.) Let

d

P3(X) = I bk(1 - x)k(1 + X)d-k
k=O

(bk~O,k=O, ... ,d)

be the Lorentz representation of P3(X), where d= d(P3)' Using the
Cauchy-Schwarz inequality and (13) we get

P3(a + I'~)P3(a + 31'~)
d

= I bk(1-a-e~t(l+a+e~)d-k
k~O

~ Lto bk[(1-a-e~)(1-a-3eJl-a2)]k/2

x [(1 + a + I'~)(1+ a +38 ~)](d-k)/2r
= Lto bk(1-a-28~)k(1+a+28~)d-k

[
82(1- a2) Jkl2[ 1'2(1- a2) ](d-k l/2}2

x 1- (l-a-2eJ1-a2)2 1-(1+a+2e~)2

(
8(2)d{ d }2

~ 1-
1

_
a

k~obk(1-a-2e~)k(1+a+28~)d-k

(
16e2d) ~

~ exp - I-a P3(a+28 y 1-a2)2.
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Hence and from (12) we get

16e2d P3(a+2e~)2
exp-- ~ ----=----;===--'-------'--r==_

I-a P3(a+e~)p3(a+3e~)

[5e2(1 _ a2)]2n

l.e.,

To prove the second lower estimate in (9) we need a lemma.

LEMMA 1. We have (for any <p)

l-a2

d2n (<p) ~n sup ()[ () 1- 2]
lal < 1 <p a <p a + a

Proof Let 0:::;; a < 1 and consider

(n::= 1, 2, ... ).

(14)

Let a < b:::;; 1, then pix) has no root on (-1, b], and Theorem 1 used on
this interval yields that P4(X) is a Lorentz polynomial on (-I,b), with
Lorentz degree d(P4):::;; d(P4) (see the remark following Theorem 1). Let the
Lorentz expansion of P4(X) on (-1, b) be

d(P4)
P4(X)= L ak(b-xt(l+x)d(P4)-k

k~O

Since

P4(b) = ao(l + b)d(P4)

we obtain from (14)

and

Now if a + <p(a):::;; 1 then let b = a + <p(a); hence
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If a + (,O(a) > 1 then let b = 1; hence

d()
4n(1-a) 2n(l-a2

)

P4 ~ 2 2 ~ 2 .(I-a) +(,O(a) (,O(a)[(,O(a)+1~a ]

115

The proof in case - 1 < a < 0 is similar. I
Now in order to prove the second lower estimate in (9), let a in

Lemma 1 be such that (,O(a) =e~. This substitution gives the desired
result. The proof of Theorem 3 is complete. I

We could not give as exact estimates for polynomials of degree n as for
quadratic polynomials. The reason is that our method of multiplying
Lorentz representations to get that of the product polynomial generates a
certain loss in the degree. Namely, there exist polynomials such that in the
obvious inequality

d(pq) ~ d(p) +d(q) (p, qEL)

the strict inequality holds. This can be seen from the following

EXAMPLE 3. Let

p(x) = 1- x + 2(1+ x) and q(x) = 2(1 - X)2 - (1- x 2
) + 2(1 +xf.

Then d(p) = 1, d(q) ~ 3, but since

p(x) q(x) = 2(1 - X)3 + 3(1- xf(l + x) + 4(1 + X)3,

we have d(pq) = 3 < d(p) + d(q).

Condition (8) in Theorem 3 permits the function (,O(x) = c:~ as a
borderline case. The following theorem shows that when (8) is violated
(e.g., the domains (10) with !Y. >!), the situation is completely different.

THEOREM 4. If at least one of the conditions

lim (,O(x) = 0
X~-1+0~

and lim (,O(xf = 0
X~1-0~

(15)

holds then dn ( (,0) = 00 (n = 2, 3, ... ).

Proof Assume, e.g., that the second condition III (15) holds. By
Lemma 1 we get

(Ial < 1).
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Letting a ~ 1- and using (15), we get d2n (cp) = 00. This obviously yields
dn ( cP ) = 00 for all n~ 2. I

We now want to characterize those cp(x) for which we have equalities in
(3) whenever p(x) E L n( cp). Let C be the open unit circle in the complex
plane.

THEOREM 5. (i) If D(cp) ~ C then

dn(cp) =n

for all n= 1, 2, ....

(ii) If(16) holds for some n~2 then D(cp)~C.

(16)

Proof (i) By assumption, all the roots of any p(x) E Ln(cp) are on, or
outside of, the complex unit circle. Thus (16) follows from Theorem 2(i).

To prove (ii) we need the following

LEMMA 2. If p(x) E L then

Ip(I)1 ~e(l-x)d(p) Ip(x)1 (O~x~ 1).

Remark. Of course, a similar statement is true for p( - 1) (then 1- x is
replaced by 1+ x, and - 1~ x ~ 0 in Lemma 2).

Proof of Lemma 2. Starting from the representation (4) we get

(
2 )d(P) d(p)

p(1)=ao2d(p)~ l+x k~oak(l-x)k(1+x)d(P)-k

~ (2-x)d(P)p(x)~e(l-x)d(p)p(x) (O~x~ 1)

(assuming thatp(x»O in (-1,1)). I
Now it suffices to prove Theorem 5(ii) when n is even. Consider the

polynomial (14). Let 0 < h < 1; then by Lemma 2 and (16)

P4(1) =[(1- a)2 + cp(a)2]n = [1 + (1- h)(l + h - 2a)]n
P4(h) (h-af+cp(a)2 (h-a)2+cp(af

I.e.,

1+h-2a e1 - h _l
2 2 ~ .(h-a) +cp(a) I-h



POLYNOMIALS WITH POSITIVE COEFFICIENTS

Now let h -+ 1-, then

2(1-a) 1
2 2::::; ,(I-a) +<p(a)
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or <p(a)2 ~ 1- a2 (0::::; a < 1). By reason of symmetry, the same inequality
holds for - 1 < a < O. This proves that C ~ D( <p ). I

To characterize those individual polynomials p(x) E L for which

d(p) = deg p,

is a more difficult problem. Let Z[, Z2' ..., Zn be the roots of p(x).

PROPOSITION. A necessary condition for (17) to hold is that

Namely, if, e.g.,

(17)

(18)

n

p(x)=xn+ ... +zJ,··zn= I, Gk(l-x)k(l+xt- k,
k=O

then comparing the coefficients of x n we get

n n

z[",zn=P(O)= L ak~ L (-I)k ak =1.
k~O k~O

However, (18) is only necessary for (17). Even ZJ' "Zn can be arbitrarily
large while d(p) > deg p. This will be seen from the following

EXAMPLE 4. For

(G arbitrary)

we have d(ps) ~ 4. Namely,

5(a-l) ll-a
Ps(x) = 32 (1- X)3 +~ (1- x)2(1 + x)

_ l1+a(l_ )(1 )2 5(a+l)(1 )3
32 x +x + 32 +x

and here the signs of the coefficients are never the same, whatever the value
of a is.

On the other hand, p(x) may have an arbitrarily small (complex) root
such that (17) still holds:
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EXAMPLE 5. Given n?: 1, for the polynomial

P6(X) = (x+ at (x2+~}

we will have d(P6) = n + 2, provided a is large enough.
To verify this, let

n£2 ak(1- x)k(1 + xt+ 2- k= (x +at (x2 +~) = an + an-Ix
k~O n n

+ ;t: [C~2)a
2
+ C) ~J xJa

n
-
J
.

Applying the substitution u = (1 - x )/( 1+ x) and multiplying by (1 + ut + 2

we get

Hence

2n+2ak= :n (n: 2) +an-I [(n: 1) -(~~~)J

+ ;t:[C~2)a2+C)~Jan-J,to (-1)'G)(n:=7
J
).

Thus ak is a polynomial of degree n of the variable a. The leading
coefficient of this polynomial is (for 2:::;; k:::;; n + 2)

= kl(n+2-k)1[(n+2)(n+l)
n! n

+ (n -k + 2)(n - k+ 1) - 2k(n -k + 2) +k(k-l)J

= k!(n - k + 2)! [(n + 2)(n + 1) + (n _ 2k)2 + 4(n _ 2k) - n+ 2J
n! n

n+ 2 k!(n -k + 2)!
~-- , >0.

n n.
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The same coefficients for ao and al are 1+ lin and n + 21n, respectively,
thus positive. Hence if a is large enough then all ak will be positive.

Some properties of polynomials carried over to Lorentz polynomials
show an improvement in the order of estimations. A remarkable property
of polynomials is the following theorem of Schur (cf. Lorentz [2, p. 41]): if
p(x)EIln then

(19)

where 11·11 denotes the supremum norm in [-1, 1]. For Lorentz
polynomials we have the following sharper result.

THEOREM 6. Let rx > 0 be a real number and n ~ 1 an integer. Then

IIp(x)11
sup 2 ~

OoiPEL.d(p)';;n IIp(x)(l-x ) II

and the supremum is attained if and only if p(X) = c( 1± x t (c =1= 0).

Proof If Iyl ~ Xl := nl(n + 2a) then

If Xl < Iyl ~ 1, say Xl <y~ 1, then we get (taking 00 = 1)

(
n +2a)n k n k ( om )~ -- (l-xd (1 +xd - O~k~--. (21)
n+rx n+2rx

On the other hand, since (1 - X)k( 1+ Xr -k is monotone decreasing in
[1 ~ 2kln, 1], we get

(~<k~n). (22)
n + 2rx



120 ERDELYI AND SZABADOS

Now ifp(x)=Lk~oak(l-x)k(l+xt-k (ak~O,k=O, ...,n), then by (21)
and (22) we obtain

(
n + 2a)n (n + 2at+ 2

"

p(yh= n + a p(xd = (4a)"(n + at+"p(x l )(I-xi)"

(n + 2at+ 2
"

:( (4a)"(n + at+'-' IIp(x)(1 - x
2

)"11.

This together with (20) shows that

IIp(x)11 (n+ 2at+ 2"

'1Ip(x)(I- x2 )"11 :( (4a)"(n +at+<.<'
(23 )

Here for p(x)=c(1 ±xt (c#O), the equality holds. Conversely, if we have
equality in (23), then (since in (20) the strict inequality holds) we must
have equalities in (21) for a suitable y E [x I> 1], which is possible only if
k=O, i.e., p(x)=ao(1 +x)n (ao#O). The other case (i.e., yE [-1, -Xl])
yields p(x) = an(1- xt (an # 0).

Remarks. Applying Theorem 6 with a = ! we get

IIp(x)11 :( J~ (n + 1) IIp(x) JT=?II (p E L, n = d(p)),

which is better than (19).
Comparing Theorem 6 with Theorem 2 we can see that if p(x) E IIn has,

all its roots outside the open unit circle then (23) holds. A direct proof of
this statement would be interesting.

Another application of Lorentz polynomials is the estimation of the
derivatives. As we shall see, significant improvement in the order of
Bernstein and Markov type inequalities will be achieved. In what follows
II . II Lq means the U norm on [ -1, 1].

THEOREM 7. Ifp(x) E L then

I!p(r)(x) II Lq:( K r2
1

/
qd(p)' IIp(x )11 L" (0 < q:( 00, r = 1, 2, ... ),

(Ixl < 1, r= 1, ..., d(p)), (24)

where K r > 0 depends only on r.

(For convenience, we use the norm notation even when 0 < q < 1.)

Proof The proof is based on the following estimate of [4]: if the roots
ofp(x)EL are in the set ~\(-1, 1) andp(x»O in (-1,1) then

Ip(r)(x)1 :(Krd(p)' P (x± 2~p))
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where the + or - sign is to be taken according as x < 0 or X> 0 (either
can be taken if x=O). Using the decomposition (4) and applying (24) for
the polynomials ak(1-x)k(1+x)d(pl-k (k=O, ...,d(p)) and adding the
resulting inequalities we obtain that (24) is true for any p(x) E L. Raising to
the qth power in (24) and integrating we get the statement by noticing that
the expression x ± r/2d(p) assumes the same value at most twice.

THEOREM 8. If p(x) E L then

(O<q~oo). (25)

Proof The case q = 00 was proved by Lorentz [1, Theorem B], so sup­
pose 0 < q < 00. We make use of the following inequality of [5] (see
Lemma 2): if 0 ~p(x) E L then with a suitable Cs > 0

where Ll(x)=J(1-x2)jd(p). Assume that Cs is so large that

and (27)

where y±(x) :=x±!Ll(x). Integrating the qth power of (26) over
Ixl~l-cs/d(p) and making the substitutions y±=y±(x) in the
corresponding integrals we obtain by (27)

f (lp'(x)1 J1-x2)Q dx ~ 5d(p)q/2r p(x)q dx. (28)
Ixl"; 1 - cs/d(p) -

Finally, using Theorem 7 we obtain

f (lp'(x)1 )1- x2)q dx ~ d(C&)Q/2r Ip'(xW dx
l-cs/d(phlxl";l P -I

This together with (28) yields Theorem 8.

Using the estimate of Theorem 3 we can get Markov and Bernstein type
inequalities for Lorentz polynomials in terms of the ordinary degree of the
polynomial:
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COROLLARY. Under the conditions of Theorem 3 we have

(i) IIp(r)(x)llu~21/qKAn/B2y IIp(x)llu,
(ii) II p(r)(x)(1- x2y/211 L''' ~ Kr(n/B2y/2 II p(x) II L''',

(iii) IIp'(x) J1-X21Iu~ cg 5!/q(fi/e) IIp(x)llu

for all O<q~ 00 and r= 1, 2, ....

(i) and (iii) follow from Theorems 7 and 8, respectively, while (ii) is a
consequence of the inequality

IIp(r)(x)(l- x2y/211 L''' ~ K~d(py/2 IIp(x)11 Lao

(cf. Lorentz [1, Theorem B]).
Comparing these inequalities (iHiii) with the ordinary Markov­

Bernstein type estimates we can see that the exponent of n is half the
original.

Note added in proof After preparing this manuscript the authors discovered that
Theorem 1 is not new (see G. P61ya and G. Szego, Problems and theorems in analysis,
Volume II, p.78, Problem 49). In any case, Theorem 1 is a simple consequence of our main
result, Theorem 3.
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